Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 555
Filtrar
1.
Sci Total Environ ; 925: 171763, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494030

RESUMO

Microbial biofilms are behind microbiologically influenced corrosion (MIC). Sessile cells in biofilms are many times more concentrated volumetrically than planktonic cells in the bulk fluids, thus providing locally high concentrations of chemicals. More importantly, "electroactive" sessile cells in biofilms are capable of utilizing extracellularly supplied electrons (e.g., from elemental Fe) for intracellular reduction of an oxidant such as sulfate in energy metabolism. MIC directly caused by anaerobic biofilms is classified into two main types based on their mechanisms: extracellular electron transfer MIC (EET-MIC) and metabolite MIC (M-MIC). Sulfate-reducing bacteria (SRB) are notorious for their corrosivity. They can cause EET-MIC in carbon steel, but they can also secrete biogenic H2S to corrode other metals such as Cu directly via M-MIC. This study investigated the use of conductive magnetic nanowires as electron mediators to accelerate and thus identify EET-MIC of C1020 by Desulfovibrio vulgaris. The presence of 40 ppm (w/w) nanowires in ATCC 1249 culture medium at 37 °C resulted in 45 % higher weight loss and 57 % deeper corrosion pits after 7-day incubation. Electrochemical tests using linear polarization resistance and potentiodynamic polarization supported the weight loss data trend. These findings suggest that conductive magnetic nanowires can be employed to identify EET-MIC. The use of insoluble 2 µm long nanowires proved that the extracellular section of the electron transfer process is a bottleneck in SRB MIC of carbon steel.


Assuntos
Desulfovibrio vulgaris , Desulfovibrio , Nanofios , Humanos , Aço , Elétrons , Carbono/metabolismo , Biofilmes , Desulfovibrio/metabolismo , Corrosão , Sulfatos/metabolismo , Redução de Peso
2.
J Hazard Mater ; 466: 133622, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280317

RESUMO

Ferrous sulfide nanoparticles (nFeS) have proven to be effective in removing heavy metals (HMs) from wastewater. One such approach, which has garnered much attention as a sustainable technology, is via the in situ microbial synthesis of nFeS. Here, a sulfate-reducing bacteria (SRB) strain, Geobacter sulfurreducens, was used to initially biosynthesize ferrous sulfide nanoparticles (SRB-nFeS) and thereafter remove HMs from acid mine drainage (AMD). SRB-nFeS was characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) coupled to an energy dispersive spectrometer (EDS), three-dimensional excitation-emission matrix (3D-EEM) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). Such characterization showed that SRB mediated the reduction of SO42- to S2- to form nFeS, where the metabolized substances functioned as complexing agents which coordinated with nFeS to form biofunctional SRB-nFeS with improved stability. One advantage of this synthetic route was that the attachment of nFeS to the bacterial surface protected SRB cells from HM toxicity. Furthermore, due to a synergistic effect between nFeS and SRB, HM removal from both solution and AMD by SRB-nFeS was enhanced relative to the constituent components. Thus, after 5 consecutive cycles of HM removal, SRB-nFeS removed, Pb(Ⅱ) (92.6%), Cd(Ⅱ) (78.7%), Cu(Ⅱ) (76.0%), Ni(Ⅱ) (62.5%), Mn(Ⅱ) (62.2%), and Zn(Ⅱ) (88.5%) from AMD This study thus provides new insights into the biosynthesis of SRB-nFeS and its subsequent practical application in the removal of HMs from AMD.


Assuntos
Desulfovibrio , Compostos Ferrosos , Metais Pesados , Sulfatos/química , Metais Pesados/química , Desulfovibrio/metabolismo , Bactérias/metabolismo , Ácidos/metabolismo
3.
J Hazard Mater ; 465: 133052, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056257

RESUMO

The sulfate-reducing efficiency of sulfate-reducing bacteria (SRB) is strongly influenced by the presence of oxygen, but little is known about the oxygen tolerance mechanism of SRB and the effect of oxygen on the metalliferous immobilization by SRB. The performance evaluation, identification of bioprecipitates, and microbial and metabolic process analyses were used here to investigate the As3+ immobilization mechanisms and survival strategies of the SRB1 consortium under different oxygen-containing environments. Results indicated that the sulfate reduction efficiency was significantly decreased under aerobic (47.37%) compared with anaerobic conditions (66.72%). SEM analysis showed that under anaerobic and aerobic conditions, the morphologies of mineral particles were different, whereas XRD and XPS analyses showed that the most of As3+ bioprecipitates under both conditions were arsenic minerals such as AsS and As4S4. The abundances of Clostridium_sensu_stricto_1, Desulfovibrio, and Thiomonas anaerobic bacteria were significantly higher under anaerobic than aerobic conditions, whereas the aerobic Pseudomonas showed an opposite trend. Network analysis revealed that Desulfovibrio was positively correlated with Pseudomonas. Metabolic process analysis confirmed that under aerobic conditions the SRB1 consortium generated additional extracellular polymeric substances (rich in functionalities such as Fe-O, SO, CO, and -OH) and the anti-oxidative enzyme superoxide dismutase to resist As3+ stress and oxygen toxicity. New insights are provided here into the oxygen tolerance and detoxification mechanism of SRB and provide a basis for the future remediation of heavy metal(loid)-contaminated environments.


Assuntos
Desulfovibrio , Consórcios Microbianos , Anaerobiose , Desulfovibrio/metabolismo , Sulfatos/metabolismo , Oxigênio/metabolismo
4.
J Hazard Mater ; 459: 132213, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37549581

RESUMO

Sulfate-reducing bacteria (SRB) can immobilize heavy metals in soils through biomineralization, and the parent rock and minerals in the soil are critical to the immobilization efficiency of SRB. To date, there is little knowledge about the fate of Cd associated with the parent rocks and minerals of soil during Cd immobilized by SRB. In this study, we created a model system using clay-size fraction of soil and SRB to explore the role of SRB in immobilizing Cd in soils from stratigraphic successions with high geochemical background. In the system, clay-size fractions (particle size < 2 µm) with concentration of Cd (0.24-2.84 mg/kg) were extracted from soils for bacteria inoculation. After SRB reaction for 10 days, the Cd fraction tended to transform into iron-manganese bound. Further, two clay-size fractions, i.e., the non-crystalline iron oxide (Fe-OX) and the crystalline iron oxide (Fe-CBD), were separated by extraction. The reaction of SRB with them verified the transformation of primary iron-bearing minerals into secondary iron-bearing minerals, which contributed to Cd redistribution. This study shows that SRB could exploit the composition and structure of minerals to induce mineral recrystallization, thereby aggravating Cd redistribution and immobilization in clay-size fractions from stratigraphic successions with high geochemical background.


Assuntos
Desulfovibrio , Poluentes do Solo , Argila , Solo/química , Cádmio/química , Poluentes do Solo/análise , Minerais/química , Ferro/metabolismo , Desulfovibrio/metabolismo , Sulfatos
5.
J Hazard Mater ; 459: 132256, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37567138

RESUMO

Sulfate-reducing bacteria (SRB) were effective in stabilizing Sb. However, the influence of electron donors and acceptors during SRB remediation, as well as the ecological principles involved, remained unclear. In this study, Desulfovibrio desulfuricans ATCC 7757 was utilized to stabilize soil Sb within microcosm. Humic acid (HA) or sodium sulfate (Na2SO4) were employed to enhance SRB capacity. The SRB+HA treatment exhibited the highest Sb stabilization rate, achieving 58.40%. Bacterial community analysis revealed that SRB altered soil bacterial diversity, community composition, and assembly processes, with homogeneous selection as the predominant assembly processes. When HA and Na2SO4 significantly modified the stimulated microbial community succession trajectories, shaped the taxonomic composition and interactions of the bacterial community, they showed converse effect in shaping bacterial community which were both helpful for promoting dissimilatory sulfate reduction. Na2SO4 facilitated SRB-mediated anaerobic reduction and promoted interactions between SRB and bacteria involved in nitrogen and sulfur cycling. The HA stimulated electron generation and storage, and enhanced the interactions between SRB and bacteria possessing heavy metal tolerance or carbohydrate degradation capabilities.


Assuntos
Antimônio , Desulfovibrio , Antimônio/metabolismo , Oxirredução , Solo , Disponibilidade Biológica , Desulfovibrio/metabolismo , Bactérias/metabolismo , Sulfatos/metabolismo
6.
Arch Microbiol ; 205(5): 162, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010699

RESUMO

Sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) inhabit oilfield production systems. Sulfur oxidation driven by SOB and dissimilatory sulfate reduction driven by SRB play important roles in sulfur cycle of oil reservoirs. More importantly, hydrogen sulfide produced by SRB is an acidic, flammable, and smelly toxic gas associated with reservoir souring, corrosion of oil-production facilities, and personnel safety. Effective control of SRB is urgently needed for the oil industry. This depends on an in-depth understanding of the microbial species that drive sulfur cycle and other related microorganisms in oil reservoir environments. Here, we identified SOB and SRB in produced brines of Qizhong block (Xinjiang Oilfield, China) from metagenome sequencing data based on reported SOB and SRB, reviewed metabolic pathways of sulfur oxidation and dissimilatory sulfate reduction, and ways for SRB control. The existing issues and future research of microbial sulfur cycle and SRB control are also discussed. Knowledge of the distribution of the microbial populations, their metabolic characteristics and interactions can help to develop an effective process to harness these microorganisms for oilfield production.


Assuntos
Desulfovibrio , Campos de Petróleo e Gás , Oxirredução , Sulfatos/metabolismo , Desulfovibrio/metabolismo , Bactérias/genética , Bactérias/metabolismo , Enxofre/metabolismo
7.
mBio ; 14(2): e0007623, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36786581

RESUMO

Desulfovibrio vulgaris has been a primary pure culture sulfate reducer for developing microbial corrosion concepts. Multiple mechanisms for how it accepts electrons from Fe0 have been proposed. We investigated Fe0 oxidation with a mutant of D. vulgaris in which hydrogenase genes were deleted. The hydrogenase mutant grew as well as the parental strain with lactate as the electron donor, but unlike the parental strain, it was not able to grow on H2. The parental strain reduced sulfate with Fe0 as the sole electron donor, but the hydrogenase mutant did not. H2 accumulated over time in Fe0 cultures of the hydrogenase mutant and sterile controls but not in parental strain cultures. Sulfide stimulated H2 production in uninoculated controls apparently by both reacting with Fe0 to generate H2 and facilitating electron transfer from Fe0 to H+. Parental strain supernatants did not accelerate H2 production from Fe0, ruling out a role for extracellular hydrogenases. Previously proposed electron transfer between Fe0 and D. vulgaris via soluble electron shuttles was not evident. The hydrogenase mutant did not reduce sulfate in the presence of Fe0 and either riboflavin or anthraquinone-2,6-disulfonate, and these potential electron shuttles did not stimulate parental strain sulfate reduction with Fe0 as the electron donor. The results demonstrate that D. vulgaris primarily accepts electrons from Fe0 via H2 as an intermediary electron carrier. These findings clarify the interpretation of previous D. vulgaris corrosion studies and suggest that H2-mediated electron transfer is an important mechanism for iron corrosion under sulfate-reducing conditions. IMPORTANCE Microbial corrosion of iron in the presence of sulfate-reducing microorganisms is economically significant. There is substantial debate over how microbes accelerate iron corrosion. Tools for genetic manipulation have only been developed for a few Fe(III)-reducing and methanogenic microorganisms known to corrode iron and in each case those microbes were found to accept electrons from Fe0 via direct electron transfer. However, iron corrosion is often most intense in the presence of sulfate-reducing microbes. The finding that Desulfovibrio vulgaris relies on H2 to shuttle electrons between Fe0 and cells revives the concept, developed in some of the earliest studies on microbial corrosion, that sulfate reducers consumption of H2 is a major microbial corrosion mechanism. The results further emphasize that direct Fe0-to-microbe electron transfer has yet to be rigorously demonstrated in sulfate-reducing microbes.


Assuntos
Desulfovibrio vulgaris , Desulfovibrio , Hidrogenase , Ferro , Desulfovibrio vulgaris/genética , Desulfovibrio vulgaris/metabolismo , Hidrogenase/genética , Hidrogenase/metabolismo , Corrosão , Oxirredução , Ácido Láctico , Sulfatos , Desulfovibrio/genética , Desulfovibrio/metabolismo
8.
J Environ Manage ; 330: 117148, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36584458

RESUMO

Bioremediation techniques utilizing sulfate-reducing bacteria (SRB) for acid mine drainage (AMD) treatment have attracted growing attention in recent years, yet substrate bioavailability for SRB is a key factor influencing treatment effectiveness and long-term stability. This study investigated the effects of external organic substrates, including four complex organic wastes (i.e., sugarcane bagasse, straw compost, shrimp shell (SS), and crab shell (CS)) and a small-molecule organic acid (i.e., propionate), on AMD removal performance and associated microbial communities during the 30-day operation of sulfate-reducing microcosms. The results showed that the pH values increased in all five microcosms, while CS exhibited the highest neutralization ability and a maximum alkalinity generation of 1507 mg/L (as CaCO3). Sulfate reduction was more effective in SS and CS microcosms, with sulfate removal efficiencies of 95.6% and 86.0%, respectively. All sulfate-reducing microcosms could remove heavy metals to different degrees, with the highest removal rate of >99.0% observed for aluminum. The removal efficiency of manganese, the most recalcitrant metal, was the highest (96%) in the CS microcosm. Correspondingly, SRB was more abundant in the CS and SS microcosms as revealed by sequencing analysis, while Desulfotomaculum was the dominant SRB in the CS microcosm, accounting for 10.8% of total effective bacterial sequences. Higher abundances of functional genes involved in fermentation and sulfur cycle were identified in CS and SS microcosms. This study suggests that complex organic wastes such as CS and SS could create and maintain preferable micro-environments for active growth and metabolism of functional microorganisms, thus offering a cost-efficient, stable, and environmental-friendly solution for AMD treatment and management.


Assuntos
Desulfovibrio , Metais Pesados , Microbiota , Saccharum , Celulose , Sulfatos/química , Metais Pesados/química , Ácidos , Desulfovibrio/metabolismo , Reatores Biológicos/microbiologia
9.
Sci Total Environ ; 861: 160551, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36460112

RESUMO

Schwertmannite (Sch) is an iron-hydroxysulfate mineral commonly found in acid mine drainage contaminated environment. The transformation mechanism of Sch mediated by pure cultured iron-reducing bacteria (FeRB) or sulfate-reducing bacteria (SRB) has been studied. However, FeRB and SRB widely coexist in the environment, the mechanism of Sch transformation by the consortia of FeRB and SRB is still unclear. This study investigated the Sch reduction by co-cultured Shewanella oneidensis (FeRB) and Desulfosporosinus meridiei (SRB). The results showed that co-culture of FeRB and SRB could accelerate the reductive dissolution of Sch, but not synergistically, and there were two distinct phases in the reduction of Sch mediated by FeRB and SRB: an initial phase in which FeRB predominated and Fe3+ in Sch was reduced, accompanied with the release of SO42-, and the detected secondary minerals were mainly vivianite; the second phase in which SRB predominated and mediated the reduction of SO42-, producing minerals including mackinawite and siderite in addition to vivianite. Compared to pure culture, the abundance of FeRB and SRB in the consortia decreased, and more minerals aggregated inside and outside the cell; correspondingly, the transcription levels of genes (cymA, omcA, and mtrCBA) related to Fe3+ reduction in co-culture was down-regulated, while the transcription levels of SO42--reducing genes (sat, aprAB, dsr(C)) was generally up-regulated. These phenomena suggested that secondary minerals produced in co-culture limited but did not inhibit bacterial growth, and the presence of SRB was detrimental to dissimilatory Fe3+ reduction, while existed FeRB was in favor of dissimilatory SO42- reduction. SRB mediated SO42- reduction by up-regulating the expression of SO42- reduction-related genes when its abundance was limited, which may be a strategy to cope with external coercion. These findings allow for a better understanding of the process and mechanism of microbial mediated reduction of Sch in the environment.


Assuntos
Desulfovibrio , Ferro , Ferro/metabolismo , Técnicas de Cocultura , Compostos Férricos/metabolismo , Minerais/metabolismo , Desulfovibrio/metabolismo , Bactérias/metabolismo , Sulfatos/metabolismo , Oxirredução
10.
Chemosphere ; 311(Pt 1): 137069, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332735

RESUMO

Heat-activated PDS oxidation (HAPO) has been widely used for in-situ chemical oxidation (ISCO) of micropollutants in groundwater, whereas the aesthetic demerit of additional SO42- production is largely overlooked. In this study, the sulfidogenic process is used to offset the aesthetic demerit, and the production of SO42- is then employed to recycle heavy metals. The innovative integration technology with PDS oxidation and sulfidogenic process via the bridging role of SO42- was reported to remove micropollutants and heavy metals in groundwater simultaneously. HAPO could completely degrade CBZ, producing 400 mg/L SO42- with the addition of 0.50 g/L PDS. Sulfate-reducing bacteria (SRB) utilize SO42- generated from HAPO as the electron acceptor in the sulfidogenic process, removing and recycling Cd(II) via the precipitation of CdS. The SRB tolerance experiment revealed the viability of PDS oxidation coupled with the sulfidogenic process via the bridging role of SO42-. Overall, the integration technology is a green and promising technology for simultaneous micropollutants removal and heavy metals recycling in groundwater.


Assuntos
Desulfovibrio , Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Cádmio , Sulfatos/metabolismo , Carbamazepina , Oxirredução , Desulfovibrio/metabolismo
11.
Chemosphere ; 311(Pt 2): 137134, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36343737

RESUMO

Sulfate-reducing bacteria (SRB)-based anaerobic process has aroused wide concern in the treatment of sulfate-containing wastewater. Chemical oxygen demand-to-sulfate ratio (COD/SO42-) and HRT are two key factors that affect not only the anaerobic treatment performance but also the activity of SRB. In this study, an anaerobic sequencing batch reactor was constructed, and the effects of different operating parameters (COD/SO42-, HRT) on the relationship of sulfate (SO42-) reduction performance, microbial communities, and metabolic pathways were comprehensively investigated. The results indicated that the SO42- removal rates could achieve above 95% under different operating parameters. Bioinformatics analysis revealed that microbial community changed with reactor operation. At the genus level, the enrichment of Propionicclava and Peptoclostridium contributed to the establishment of a homotrophic relationship with Desulfobulbus, the dominant SRB in the reactor, which indicated that they took vital part in maintaining the structural and functional stability of the bacterial community under different operating parameters. In particular, an increasing trend of the relative abundance of functional genes encoding dissimilatory sulfate reduction was detected with the increase of COD/SO42-, which indicated high SO42- reduction potentials. This knowledge will help to reveal the mechanism of the effect of operating parameters on the anaerobic sulfate removal process, thus providing effective guidance for the targeted regulation of anaerobic sequencing batch bioreactors treating SO42--containing wastewater.


Assuntos
Desulfovibrio , Águas Residuárias , Anaerobiose , Bactérias/metabolismo , Sulfatos/química , Reatores Biológicos/microbiologia , Desulfovibrio/metabolismo , Eliminação de Resíduos Líquidos/métodos
12.
N Biotechnol ; 72: 128-138, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36396027

RESUMO

A range of Desulfovibrio spp. can reduce metal ions to form metallic nanoparticles that remain attached to their surfaces. The bioreduction of palladium (Pd) has been given considerable attention due to its extensive use in areas of catalysis and electronics and other technological domains. In this study we report, for the first time, evidence for Pd(II) reduction by the highly corrosive Desulfovibrio ferrophilus IS5 strain to form surface attached Pd nanoparticles, as well as rapid formation of Pd(0) coated microbial nanowires. These filaments reached up to 8 µm in length and led to the formation of a tightly bound group of interconnected cells with enhanced ability to attach to a low carbon steel surface. Moreover, when supplied with high concentrations of Pd (≥ 100 mmol Pd(II) g-1 dry cells), both Desulfovibrio desulfuricans and D. ferrophilus IS5 formed bacteria/Pd hybrid porous microstructures comprising millions of cells. These three-dimensional structures reached up to 3 mm in diameter with a dose of 1200 mmol Pd(II) g-1 dry cells. Under suitable hydrodynamic conditions during reduction, two-dimensional nanosheets of Pd metal were formed that were up to several cm in length. Lower dosing of Pd(II) for promoting rapid synthesis of metal coated nanowires and enhanced attachment of cells onto metal surfaces could improve the efficiency of various biotechnological applications such as microbial fuel cells. Formation of biologically stimulated Pd microstructures could lead to a novel way to produce metal scaffolds or nanosheets for a wide variety of applications.


Assuntos
Desulfovibrio desulfuricans , Desulfovibrio , Paládio/química , Paládio/metabolismo , Desulfovibrio desulfuricans/metabolismo , Desulfovibrio/metabolismo , Catálise
13.
J Environ Manage ; 323: 116368, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36261973

RESUMO

The sulfate-reducing mediate microbial fuel cell (MFC) shows advantages in treating recalcitrant flowback water (FW) from shale gas extraction, but the stability under fluctuant concentrations of sulfate in FW remains unknown. Herein, we investigated the impact of fluctuant sulfate concentrations on the performance of FW treatment in MFCs. Sulfate concentration showed a significant role in the MFC treating FW, with a COD removal of 69.8 ± 9.7% and a peak power density of 2164 ± 396 mW/m3 under 247.5 mg/L sulfate, but only 39.1% and 1216 mW/m3 under 50 mg/L sulfate. The fluctuation of sulfate in a short time allowed to a stable performance, but a longtime intermittent decrease of feeding sulfate concentration significantly inhibited power generation to no more than 512 mW/m3. The sulfur cycling between sulfate and sulfide existed in the system, but the cycling rate became much lower after the longtime intermittent decrease, with resulting to the decreased power generation. Abundant sulfur-oxidizing bacteria (SOB) of Desulfuromonadaceae and Helicobacteraceae in the MFC stably feeding with 247.5 mg/L sulfate supported a high sulfur cycling rate. With the cooperation of abundant sulfate-reducing bacteria (SRB) of Desulfovibrionaceae (capable of producing electricity) on the anode and Desulfobacteraceae in anolyte, this sulfur cycling endowed the MFC with high sulfate tolerance and critically contributed to recalcitrant organics removal and power generation. However, much less SOB of Helicobacteraceae and Campylobacteraceae on the anode with high S0 accumulation on the surface after the longtime intermittent decrease of sulfate likely led to the low sulfur cycling rate. With also less SRB of Marinilabiaceae (capable of producing electricity) and Synergistaceae in the system, this low sulfur cycling rate thus hampered power generation. This research provides an important reference for the bioelectrochemical treatment of wastewater containing recalcitrant organics and sulfate.


Assuntos
Fontes de Energia Bioelétrica , Desulfovibrio , Purificação da Água , Fontes de Energia Bioelétrica/microbiologia , Águas Residuárias , Gás Natural , Enxofre/metabolismo , Sulfatos/metabolismo , Desulfovibrio/metabolismo , Bactérias/metabolismo , Sulfetos/metabolismo
14.
Water Res ; 226: 119227, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36240714

RESUMO

Dissimilatory sulfate reduction-based processes have long been a viable option for treating acidic metal-laden wastewater (AMW). Such processes can be optimized through enhancing sulfidogenic activity and the microbial consortia's resilience against a harsh environment. This study investigated how granular and flocculent sulfate-reducing bacteria (SRB) sludge respond to AMW as well as the mechanisms through which they adapt to the wastewater, with particular focuses on the stability of the sulfidogenic activities, metal removal, and the bacteria's resistance over the long-term: the flocculent SRB lost more than 50% of their treatment capacity after 35 days of treating AMW with the presence of Cd2+, Cu2+, Zn2+, and Ni2+ at 30 mg/L each, under pH = 4.5. In contrast, the granular SRB maintained its metal removal rate at 91% throughout the 161-day trial. Despite the SRB abundance remaining at approximate 40%, organics-partial oxidizing genera (Desulfobulbus and Desulfobacter) began to dominate due to their kinetic advantage. The extracellular glycosyl compositions were revealed to be critical for the stability of the granular structure and microbial activity as the extracellular proteins disintegrated irreversible. Usage the molecular dynamic simulation, the mobility of the metal ions in the SRB granular system was suppressed by the presence of a more diverse glycosyl composition compared with the flocculent system (10-50% diffusion coefficients differences). All of the identified glycosyls (especially xylose and rhamnose) exhibited strong interactions with Cu2+ (-470 kJ mol-1), while the maximum binding strength of Cd2+ to glycosyls was greater than -40 kJ mol-1, suggesting a low Cd2+complexation efficiency. The findings of this study shed light on the defensive mechanisms of SRB granules against multi-metal stress, and provide clues for efficient AMW treatment.


Assuntos
Desulfovibrio , Esgotos , Esgotos/microbiologia , Águas Residuárias , Sulfatos/metabolismo , Reatores Biológicos , Cádmio , Desulfovibrio/metabolismo
15.
Int J Biol Macromol ; 213: 631-638, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35667460

RESUMO

Hydrogen sulfide (H2S) is a bioactive gas regulating insulin secretion and sensitivity, produced by sulfate-reducing bacteria in the gut. The present study investigated the effect of chondroitin sulfate (CS) treatment, which indirectly increased the H2S production on nonalcoholic fatty liver disease (NAFLD). A 7-week CS supplementation had beneficial effects on body weight gain, liver function, hepatic histology, and serum lipid levels. CS could ameliorate diet-induced insulin resistance and improve insulin sensitivity via the AKT pathway, and modulate gut microbiota composition, especially increased the abundance of Desulfovibrio and elevated levels of hydrogen sulfide (H2S). Collectively, these findings suggested that CS treatment was positively correlated with Desulfovibrio in the gut, and the metabolic H2S flowed into the liver via the gut-liver axis, thereby triggering the AKT signaling pathway and improving insulin resistance. Thus, CS-induced alterations in the gut microbiota seem a promising for ameliorating NAFLD.


Assuntos
Desulfovibrio , Sulfeto de Hidrogênio , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Sulfatos de Condroitina/metabolismo , Sulfatos de Condroitina/farmacologia , Desulfovibrio/metabolismo , Dieta Hiperlipídica , Sulfeto de Hidrogênio/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
16.
ACS Chem Biol ; 17(7): 1901-1909, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35766974

RESUMO

Metal-dependent formate dehydrogenases are important enzymes due to their activity of CO2 reduction to formate. The tungsten-containing FdhAB formate dehydrogenase from Desulfovibrio vulgaris Hildenborough is a good example displaying high activity, simple composition, and a notable structural and catalytic robustness. Here, we report the first spectroscopic redox characterization of FdhAB metal centers by EPR. Titration with dithionite or formate leads to reduction of three [4Fe-4S]1+ clusters, and full reduction requires Ti(III)-citrate. The redox potentials of the four [4Fe-4S]1+ centers range between -250 and -530 mV. Two distinct WV signals were detected, WDV and WFV, which differ in only the g2-value. This difference can be explained by small variations in the twist angle of the two pyranopterins, as determined through DFT calculations of model compounds. The redox potential of WVI/V was determined to be -370 mV when reduced by dithionite and -340 mV when reduced by formate. The crystal structure of dithionite-reduced FdhAB was determined at high resolution (1.5 Å), revealing the same structural alterations as reported for the formate-reduced structure. These results corroborate a stable six-ligand W coordination in the catalytic intermediate WV state of FdhAB.


Assuntos
Desulfovibrio vulgaris , Desulfovibrio , Catálise , Desulfovibrio/metabolismo , Desulfovibrio vulgaris/metabolismo , Ditionita , Espectroscopia de Ressonância de Spin Eletrônica , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Formiatos , Metais , Oxirredução
17.
Water Res ; 220: 118646, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35661505

RESUMO

The stress responses of sulfate-reducing bacteria (SRB) sludge to polyethylene (PE) microplastic exposure were revealed for the first time. In this study, a lab-scale sulfate-reducing up-flow sludge bed reactor was continuously operated with different concentrations of PE microplastics in the feed (20, 100, and 500 microplastic particles (MPs)/L). Exposure to low levels of PE microplastics (i.e., 20 MPs/L) had a limited effect on SRB consortia, whereas higher levels of PE microplastics imposed apparent physiological stresses on SRB consortia. Despite this, the overall reactor performance, i.e., chemical oxygen demand removal and sulfate conversion, was less affected by prolonged exposure to PE microplastics. Moreover, as the concentration of PE microplastics increased, the SRB consortia promoted the production of extracellular polymeric substances to a greater extent, especially the secretion of proteins. As a result, protective effects against the cytotoxicity of PE microplastics were provided. Batch experiments further demonstrated that leaching additives from PE microplastics (including acetyl tri-n­butyl citrate and bisphenol A, concentrations up to 5 µg/g sludge) exerted only a minor effect on the activity of SRB consortia. Additionally, microbial community analysis revealed active and potentially efficient sulfate reducers at different operational stages. Our results provide insight into the stress responses of SRB sludge under PE microplastic exposure and suggested that SRB consortia can gradually adapt to and resist high levels of PE microplastics. These findings may promote a better understanding of the stable operation of SRB sludge systems under specific environmental stimuli for practical applications.


Assuntos
Desulfovibrio , Esgotos , Reatores Biológicos , Desulfovibrio/metabolismo , Microplásticos , Plásticos , Polietileno , Esgotos/microbiologia , Sulfatos/metabolismo
18.
Anaerobe ; 75: 102582, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35533828

RESUMO

Desulfovibrio spp. is a commensal sulfate reducing bacterium that is present in small numbers in the gastrointestinal tract. Increased concentrations of Desulfovibrio spp. (blooms) have been reported in patients with inflammatory bowel disease and irritable bowel syndrome. Since stress has been reported to exacerbate symptoms of these chronic diseases, this study examined whether the stress catecholamine norepinephrine (NE) promotes Desulfovibrio growth. Norepinephrine-stimulated growth has been reported in other bacterial taxa, and this effect may depend on the availability of the micronutrient iron. OBJECTIVES: This study tested whether norepinephrine exposure affects the in vitro growth of Desulfovibrio vulgaris in an iron dependent manner. METHODS: DSV was incubated in a growth medium with and without 1 µm of norepinephrine. An additional growth assay added the iron chelator deferoxamine in NE exposed DSV. Iron regulatory genes were assessed with and without the treatment of NE and Deferoxamine. RESULTS: We found that norepinephrine significantly increased growth of D. vulgaris. Norepinephrine also increased bacterial production of hydrogen sulfide. Additionally, norepinephrine significantly increased bacterial expression in three of the four tested iron regulatory genes. The iron chelator deferoxamine inhibited growth of D. vulgaris in a dose-dependent manner and reversed the effect of norepinephrine on proliferation of D. vulgaris and on bacterial expression of iron regulatory genes. CONCLUSION: The data presented in this work suggests that promotion of D. vulgaris growth by norepinephrine is iron dependent.


Assuntos
Desulfovibrio vulgaris , Desulfovibrio , Desferroxamina/metabolismo , Desferroxamina/farmacologia , Desulfovibrio/metabolismo , Desulfovibrio vulgaris/genética , Humanos , Ferro/metabolismo , Quelantes de Ferro/metabolismo , Quelantes de Ferro/farmacologia , Norepinefrina/metabolismo , Norepinefrina/farmacologia
19.
Appl Environ Microbiol ; 88(12): e0058022, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35638843

RESUMO

The growth of sulfate-reducing bacteria (SRB) and associated hydrogen sulfide production can be problematic in a range of industries such that inhibition strategies are needed. A range of SRB can reduce metal ions, a strategy that has been utilized for bioremediation, metal recovery, and synthesis of precious metal catalysts. In some instances, the metal remains bound to the cell surface, and the impact of this coating on bacterial cell division and metabolism has not previously been reported. In this study, Desulfovibrio desulfuricans cells (1g dry weight) enabled the reduction of up to 1500 mmol (157.5 g) palladium (Pd) ions, resulting in cells being coated in approximately 1 µm of metal. Thickly coated cells were no longer able to metabolize or divide, ultimately leading to the death of the population. Increasing Pd coating led to prolonged inhibition of sulfate reduction, which ceased completely after cells had been coated with 1200 mmol Pd g-1 dry cells. Less Pd nanoparticle coating permitted cells to carry out sulfate reduction and divide, allowing the population to recover over time as surface-associated Pd diminished. Overcoming inhibition in this way was more rapid using lactate as the electron donor, compared to formate. When using formate as an electron donor, preferential Pd(II) reduction took place in the presence of 100 mM sulfate. The inhibition of important metabolic pathways using a biologically enabled casing in metal highlights a new mechanism for the development of microbial control strategies. IMPORTANCE Microbial reduction of sulfate to hydrogen sulfide is highly undesirable in several industrial settings. Some sulfate-reducing bacteria are also able to transform metal ions in their environment into metal phases that remain attached to their outer cell surface. This study demonstrates the remarkable extent to which Desulfovibrio desulfuricans can be coated with locally generated metal nanoparticles, with individual cells carrying more than 100 times their mass of palladium metal. Moreover, it reveals the effect of metal coating on metabolism and replication for a wide range of metal loadings, with bacteria unable to reduce sulfate to sulfide beyond a specific threshold. These findings present a foundation for a novel means of modulating the activity of sulfate-reducing bacteria.


Assuntos
Desulfovibrio desulfuricans , Desulfovibrio , Sulfeto de Hidrogênio , Bactérias/metabolismo , Divisão Celular , Desulfovibrio/metabolismo , Desulfovibrio desulfuricans/metabolismo , Formiatos/metabolismo , Sulfeto de Hidrogênio/metabolismo , Oxirredução , Paládio/metabolismo , Sulfatos/metabolismo , Sulfetos/metabolismo
20.
J Hazard Mater ; 433: 128835, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398798

RESUMO

Mercury (Hg) is a pervasive environmental pollutant and poses serious health concerns as inorganic Hg(II) can be converted to the neurotoxin methylmercury (MeHg), which bioaccumulates and biomagnifies in food webs. Phytoplankton, representing the base of aquatic food webs, can take up Hg(II) and influence MeHg production, but currently little is known about how and to what extent phytoplankton may impact Hg(II) methylation by itself or by methylating bacteria it harbors. This study investigated whether some species of phytoplankton could produce MeHg and how the live or dead phytoplankton cells and excreted algal organic matter (AOM) impact Hg(II) methylation by several known methylators, including iron-reducing bacteria (FeRB), Geobacter anodireducens SD-1 and Geobacter sulfurreducens PCA, and the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans ND132 (or Pseudodesulfovibrio mercurii). Our results indicate that, among the 4 phytoplankton species studied, none were capable of methylating Hg(II). However, the presence of phytoplankton cells (either live or dead) from Chlorella vulgaris (CV) generally inhibited Hg(II) methylation by FeRB but substantially enhanced methylation by SRB D. desulfuricans ND132. Enhanced methylation was attributed in part to CV-excreted AOM, which increased Hg(II) complexation and methylation by ND132 cells. In contrast, inhibition of methylation by FeRB was attributed to these bacteria incapable of competing with phytoplankton for Hg(II) binding and uptake. These observations suggest that phytoplankton could play different roles in affecting Hg(II) methylation by the two groups of anaerobic bacteria, FeRB and SRB, and thus shed additional light on how phytoplankton blooms may modulate MeHg production and bioaccumulation in the aquatic environment.


Assuntos
Chlorella vulgaris , Desulfovibrio desulfuricans , Desulfovibrio , Mercúrio , Compostos de Metilmercúrio , Bactérias/metabolismo , Chlorella vulgaris/metabolismo , Desulfovibrio/metabolismo , Desulfovibrio desulfuricans/metabolismo , Exsudatos e Transudatos/metabolismo , Ferro/metabolismo , Mercúrio/metabolismo , Mercúrio/toxicidade , Metilação , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/toxicidade , Fitoplâncton , Sulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA